Enhancing Translation Language Models with Word Embedding for Information Retrieval
نویسندگان
چکیده
In this paper, we explore the usage of Word Embedding semantic resources for Information Retrieval (IR) task. This embedding, produced by a shallow neural network, have been shown to catch semantic similarities between words (Mikolov et al., 2013). Hence, our goal is to enhance IR Language Models by addressing the term mismatch problem. To do so, we applied the model presented in the paper Integrating and Evaluating Neural Word Embedding in Information Retrieval by Zuccon et al. (2015) that proposes to estimate the translation probability of a Translation Language Model using the cosine similarity between Word Embedding. The results we obtained so far did not show a statistically significant improvement compared to classical Language Model. Keywords— Information Retrieval, Language Model , Word Embedding
منابع مشابه
Using Word Embeddings for Query Translation for Hindi to English Cross Language Information Retrieval
Cross-Language Information Retrieval (CLIR) has become an important problem to solve in the recent years due to the growth of content in multiple languages in the Web. One of the standard methods is to use query translation from source to target language. In this paper, we propose an approach based on word embeddings, a method that captures contextual clues for a particular word in the source l...
متن کاملFaDA: Fast Document Aligner using Word Embedding
FaDA1 is a free/open-source tool for aligning multilingual documents. It employs a novel crosslingual information retrieval (CLIR)-based document-alignment algorithm involving the distances between embedded word vectors in combination with the word overlap between the source-language and the target-language documents. In this approach, we initially construct a pseudo-query from a source-languag...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملQuery Translation for Cross-Language Information Retrieval using Multilingual Word Clusters
In Cross-Language Information Retrieval, finding the appropriate translation of the source language query has always been a difficult problem to solve. We propose a technique towards solving this problem with the help of multilingual word clusters obtained from multilingual word embeddings. We use word embeddings of the languages projected to a common vector space on which a community-detection...
متن کاملDimension Projection Among Languages Based on Pseudo-Relevant Documents for Query Translation
Using top-ranked documents in response to a query has been shown to be an effective approach to improve the quality of query translation in dictionarybased cross-language information retrieval. In this paper, we propose a new method for dictionary-based query translation based on dimension projection of embedded vectors from the pseudo-relevant documents in the source language to their equivale...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.03844 شماره
صفحات -
تاریخ انتشار 2018